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Abstract

We consider the modes of the electric field of a cavity with an embedded
polarized dielectric film. The model consists in the classical Maxwell equations
coupled to a Duffing oscillator for the film which we assume infinitely thin.
We derive the normal modes of the system and show that they are orthogonal
with a special scalar product which we introduce. These modes are well suited
to describe the system even for a film of finite thickness. By acting on the film
we demonstrate switching from one cavity mode to another. Since the system
is linear, little energy is needed for this conversion. Moreover the amplitude
equations describe very well this complex system under different perturbations
(damping, forcing and nonlinearity) with very few modes. These results are
very general and can be applied to different situations like for an atom in a
cavity or a Josephson junction in a capacitor and this could be very useful for
many nano-physics applications.

PACS numbers: 42.60.Da, 77.55.+f

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There are many reasons to couple an oscillator to a cavity. One example is a laser built using a
Fabry–Perot resonator enclosing an active medium which can be modeled as a two-level atom
[1, 2]. The cavity can also be used to synchronize oscillators [3] as for an array of Josephson
junctions. For window Josephson junctions, used as microwave generators, the Josephson
junction collects all the energy in one of the cavity modes [4]. The cavity can also be used
as a thermostat to cool the oscillator as described in [5] where an optical cavity is used to

1751-8113/09/165204+18$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/16/165204
mailto:caputo@insa-rouen.fr
mailto:murkamars@hotmail.com
mailto:amaimistov@hotmail.com
http://stacks.iop.org/JPhysA/42/165204


J. Phys. A: Math. Theor. 42 (2009) 165204 J-G Caputo et al

cool an atom. In another example coupling an atom or quantum oscillator to a resonator can
significantly change its transport properties [6].

In all the systems described above we have a localized oscillator coupled to a resonator.
In addition the size of the oscillator can often be neglected. This situation can be represented
by a thin film model [7, 8]. Such a thin film model was generalized by taking into account the
local field effects (dipole–dipole interaction) [9–11]. Intrinsic optical bistability is the main
result of this generalization. Thin films containing three-level atoms [12], two-photon resonant
atoms [13, 14], inhomogeneously broadened two-level [15] atoms and two-level atoms with
permanent dipole [16] represent the different generalizations of the model. The coherent
responses of resonant atoms of a thin film to short optical pulse excitation were considered
in [15]. It was shown that for a certain intensity the incident pulse generates sharp spikes in
the transmitted radiation. Photon echo in the form of multiple responses to a double or triple
pulse excitation was predicted also in this paper. The coherent reflection from a thin film as
superradiation was studied in [17–19].

Recently we used the thin film model to describe switching phenomena in ferroelectrics
[21]. The behavior of the new artificial materials—metamaterials—under the action of
electromagnetic pulses could also be described by this model [22]. As we see, the thin
film model is extremely fruitful, the investigation of the behavior of the thin film embedded
inside the cavity is a very attractive problem. When the model of a thin film is explored, the
problem of the matter–field interaction reduces to that of an electromagnetic cavity with an
embedded (linear or nonlinear) oscillator. Frequently the nonlinear problem is analyzed using
coupled mode equations. In this approach the relevant values are the amplitudes of each of
the linear modes. The nonlinear partial differential equation of motion is reduced to a system
of coupled ordinary differential equations for the amplitudes of the linear modes. A suitable
choice of the linear modes allows us to get an effective description of the original problem.

We consider here this simplest and most general situation, first for small energy for which
the problem is linear. Similar models have been recently considered for cavity electrodynamics
by Meystre et al [23, 24] and Domokos et al [25]. One can also consult [26, 27] for the full
quantum treatment of a leaky laser cavity. In these studies, the internal structure of the atoms
interacting with the cavity is eliminated and the coupling of the field at the atoms is described
by reflection and transmission coefficients. Then the atom is ‘slaved’ to the electromagnetic
field and the coupling is asymmetric. In our complementary approach, we keep both the
field e and the medium variable q thereby allowing a symmetric coupling. We will consider
the normal modes of the film–cavity coupled system. These are solutions of a non-standard
boundary value problem. These two-component (e, q) modes are necessary to describe the
evolution of the system (10). We show in the appendix that standard Fourier modes or other
eigenmodes do not describe the frequency dependent interaction. These adapted eigenmodes
are orthogonal with respect to a special scalar product which we introduce. Using these modes
we can define simply the state of the system. We will show that one can get mode conversion
by acting on the film sub-system. This mechanism can be applied to the different systems
described above. In the nonlinear case, for medium amplitudes, we show that a few modes
are sufficient to describe the evolution of the system. Although our study is classical, it could
be useful to compare it with the formalism of cavity quantum electrodynamics (CQED) [20].

After introducing the model in section 2, we consider the linear limit in section 3 and
derive the normal modes of the system. The special scalar product is derived in section 4. In
sections 5 and 6 we use the normal modes to define the state of the (linear) system and show
mode conversion when driving and damping the film. We also describe the general nonlinear
case and we conclude in section 7.
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2. The thin film model

We consider a one-dimensional model of the electromagnetic radiation interacting with a
polarized dielectric film inside a cavity. The film is placed at the distance xa inside the cavity
having the length l. The Lagrangian density for the electromagnetic field, the film medium
and their coupling is the following [21]:

L = a2
t

2
− a2

x

2
+ δ (x − xa)

(
q2

t

2
− m

q2

2
− q4

4
− αqat

)
. (1)

Here a is the analog of vector potential and q is the medium polarization, α is a coupling
constant. The last term in the Lagrangian describes the coupling between a and q. The
dielectric medium can be ferroelectric (m = −1) with two polarizations or paraelectric
m = 1. The Hamiltonian of the system is

H = at

∂L
∂at

+ qt

∂L
∂qt

− L, (2)

which gives

H = a2
t

2
+

a2
x

2
+ δ (x − xa)

(
q2

t

2
+ m

q2

2
+

q4

4

)
. (3)

Note that the coupling is absent from H. It appears instead in the momentum associated with
a, pa ≡ ∂L

∂at
= at − δ (x − xa) αq.

The variation of the action functional yields the Euler–Lagrange equations for a and q

∂L
∂a

= d

dt

∂L
∂at

+
d

dx

∂L
∂ax

, (4)

∂L
∂q

= d

dt

∂L
∂qt

+
d

dx

∂L
∂qx

, (5)

which reduce to

att − axx = αδ (x − xa) qt , (6)

qtt + mq + q3 = −αat . (7)

The equations for the electric field e = −at and medium variable can then be obtained

ett − exx = −αδ(x − xa)qtt , (8)

qtt + mq + q3 = αe(xa), (9)

where the coupling between the fields e and q only occurs in the medium at x = xa .
In a recent article [21], we considered with this model the interaction of a thin dielectric

film with an electromagnetic pulse. We studied both the case of a ferroelectric and paraelectric
film. For the ferroelectric film we showed that the polarization can be switched by an incoming
pulse and studied this phenomenon. Here we will assume that the film is embedded in a cavity
and we will study how cavity modes can be controlled by the film. Specifically we will assume
Dirichlet boundary conditions for the field.

For small amplitudes of the field, it is natural to neglect the nonlinear response of the film.
Note however that the ferroelectric film and paraelectric film have different natural frequencies
corresponding to different stationary points. For the paraelectric case, there is only one fixed
point q = 0 while for the ferroelectric case there are three fixed points, the unstable one q = 0
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and the two stable ones q = ±1 corresponding to two opposite signs of the polarization. It is
then natural to introduce the natural frequency of the oscillator ω2

0 = m for the paraelectric
case and ω2

0 = m + 3q2
0 for the ferroelectric case. We therefore consider below the general

linear problem of a harmonic oscillator of frequency ω0 embedded in a cavity.

3. The linear limit: normal modes

The linear problem is

ett − exx = −αδ (x − xa) qtt , (10)

qtt + ω2
0q = αe(xa). (11)

Note that we have a Dirac delta function in the first equation so that the solution will not have
a second derivative at x = xa . In this case, one can write the solution using standard sine
Fourier modes. However these are not adapted to describe the evolution because the projection
of the operator gives wrong results [28]. Then we need to define new normal modes. For this
one first separates time and space and then looks for solutions in the form

e(x, t) = E(x) eiωt , q(x, t) = Q(x) eiωt ,

so that the system (10) becomes

E′′(x) + ω2E(x) = −αω2Qδ(x − xa), Q = αE(xa)

ω2
0 − ω2

. (12)

As expected from the general theory of linear operators [29] the system will exhibit
eigenfrequencies and eigenmodes (normal modes). Combining these two equations, we
obtain the final boundary value problem for E

E′′(x) + ω2

(
1 +

α2δ(x − xa)

ω2
0 − ω2

)
E(x) = 0, (13)

with the boundary conditions E(0) = E(l) = 0.
To obtain the solution, note that except for x = xa

E′′(x) + ω2E(x) = 0.

Using this remark and the boundary conditions we get the left and right solutions

E(x) =
{
A sin ωx, x < xa,

B sin ω(l − x), x > xa,
(14)

where A and B are constants. To connect the left and right solutions we use the continuity
of E(x) as well as of e at x = xa . The second relation needed is the jump condition for E′

obtained by integrating (13) over a small interval centered on xa . When the size of the interval
goes to zero we get

[E′]x
+
a

x−
a

= − α2ω2

ω2
0 − ω2

E(xa). (15)

At x = xa the continuity of E and jump condition (15) give the following relations:

A sin ωxa − B sin ω(l − xa) = 0, (16)

A

(
α2ω

ω2
0 − ω2

sin ωxa − cos ωxa

)
− B cos ω(l − xa) = 0. (17)
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Figure 1. Eigenvalues (zeros of the dispersion relation (18)) as a function of the position of the
film xa . The parameters are l = π, α = 1 and ω0 = 1.

For this homogeneous system to have a nonzero solution, the determinant must be zero and
this gives the dispersion relation

sin ωl = α2 ω

ω2
0 − ω2

sin ωxa sin ω(l − xa), (18)

which determines the allowed frequencies ω of the system.
As can be expected from the general theory [29], we have an infinite countable set of

allowed frequencies. Note that in the absence of coupling to the film α = 0, we get the
standard Fourier modes ωn = nπ/l. For small α the shift in frequency is small because the
right-hand side is proportional to α2. These eigenfrequencies can be computed using bisection
for example.

To summarize, the eigenvalues and eigenvectors (up to a multiplicative constant) of the
boundary value problem (12) are{

ωi, Vi =
(

Ei(x)

Qi

)}
, (19)

where

Ei(x) =
⎧⎨
⎩

sin ωix, x < xa,

sin ωixa

sin ωi(l − xa)
sin ωi(l − x), x > xa,

Qi = αEi(xa)

ω2
0 − ω2

i

, (20)

and ωi satisfies (18).
Note that an equation similar to (13) was obtained in the theory of a 1D waveguide with

a perfect mirror at one end and a two-level atom at the other end [30]. Contrary to our case,
this is not an eigenvalue problem because the system is open on one side. From another point
of view, the system cavity/film (10) was considered for ω0 = 0 by Bocchieri et al [31] in the
context of statistical mechanics. Their main result was that there was always energy exchange
between the film and the cavity so that equipartition could not be reached. Indeed, this can
be seen by examining the normal modes (20) which couple Ei and Qi . Only for special
symmetries (film at the center of the cavity . . . ) and special frequencies do we get Qi = 0.

3.1. Influence of the film parameters on the dispersion relation

We now study the dispersion relation in more detail. In figure 1 we plot the solutions of (18)
as a function of the film position for ω0 = 1 and α = 1. Note how the systems generate
two eigenvalues in place of the frequency ω0 = 1. For large frequencies ω � ω0 we recover
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the standard Fourier cavity modes ωn = nπ/l. The eigenmodes for the particular case of a
centered film shown in figure 1 contain the even Fourier modes. These correspond to Qi = 0
because their derivative is continuous at xa . This will have important practical consequences.

Because of the film, the eigenfrequencies of the system film/cavity differ from the usual
Fourier cavity modes ωn = nπ/l. They are shifted if ωn �= ω0 and disappear if ωn = ω0.
Let us compute this shift in the limit of small α using perturbation theory. To simplify the
analysis, we assume l = π so that ωn = nπ/l = n. We search the frequency ω using the
expansion

ω = n + α2ω1 + · · · ,
with ω1 � 1 and n are the usual sine Fourier modes of the cavity. We have the following
relations:

sin ωl = (−1)nα2ω1π + O(α4),

sin ωxa = sin nxa + α2ω1xa cos nxa + O(α4),

sin ω(l − xa) = sin n(l − xa) + α2ω1(l − xa) cos n(l − xa) + O(α4).

Plugging these relations into (18) we have, up to O(α4)

(−1)nω1 = n

π
(
ω2

0 − n2
) sin nxa sin n(l − xa). (21)

Assuming that α2 < 1 we get the simplified expression

ω = n − α2(−1)n
n

π

1

ω2
0 − n2

sin nxa sin n(l − xa) + O(α4). (22)

Due to the presence of the film the cavity modes close to the film mode are blueshifted if the
frequency of the cavity mode is above the oscillator eigenfrequency and redshifted for lower
cavity mode frequencies.

When ω2
0 = n2

0 where n0 is an integer, the oscillator frequency coincides with the cavity
mode. In this case the eigenfrequency of the combined system splits away from n0. This
is a general property of coupled oscillators. The splitting can be calculated for small α by
assuming

ω = ω0 + ω1,

where |ω1| � ω0.
Plugging this expression into the dispersion relation and collecting the terms, we obtain

the second-degree equation

Aω1
2 + Bω1 + C = 0,

where

A = 4πn + α2((π − 2xa) sin 2nxa − (cos 2nxa − 1)n/2), (23)

B = α2(n(π − 2xa) sin 2nxa + cos 2nxa − 1), (24)

C = α2n(cos 2nxa − 1). (25)

The two branches of the resonant frequency are then given by

ω1 = −B ± √
B2 − 4AC

2A
.

As an example, consider the case of figure 1 corresponding to l = π and a film placed in the
center of the cavity xa = 0.5l. Then cos ω(l − 2xa) = 1 and cos ωl ≈ (−1)n0

(
1 − ω2

1

/
2
)
.

6
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Figure 2. Plot of the first 10 eigenfrequencies as a function of the coupling parameter α for an
off-centered film xa = l/4 = π/4 whose frequency is ω0 = 3.

Then the splitting is given by

4πn0ω
2
1 = α2(n0 + ω1)

(
1 − ω2

1

/
2
)
(1 − (−1)n0), (26)

so that ω1 = 0 for even resonant frequency n0 and there is no shift from the resonance in this
case. For the odd n0 we obtain the quadratic equation for the frequency detunings ω1 from the
resonance

ω2
1 − α2ω1

n0(2π + α2/2)
− α2

2π + α2/2
= 0, (27)

ω1 = α2

2n(2π + α2/2)

(
1 ±

√
1 +

4n0
2(2π + α2/2)

α2

)
. (28)

When α increases, the influence of the film grows and the eigenfrequencies become very
different from the Fourier cavity modes. In fact when α � 1, the dominating term in the
dispersion relation is the right-hand side and we obtain

sin ωxa = 0, or sin ω(l − xa) = 0,

so that

ωn = nπ

xa

, or ωn = nπ

l − xa

. (29)

This corresponds to oscillations in the left or right cavities. Figure 2 shows the first 10
eigenfrequencies as a function of the coupling parameter α for a cavity of length l = π and
an off-centered film xa = l/4 whose frequency ω0 = 3. Note the splitting for ω = 3. As α

increases, the eigenfrequencies tend to those given by (29), i.e. ωn = 4n or ωn = 4n/3.

4. Orthogonality of the normal modes

Using the vector notation V defined above, the original linear system (10) can be formally
written as (

∂2
t + L

)
V = 0, (30)

where the operator L is

L = −∂2
x

(
1 0
0 0

)
+

(
α2δ(x − xa) −αω2

0δ(x − xa)

−α
∫

δ(x − xa) ω2
0

)
. (31)

The eigenfrequencies and eigenvectors ωi, Vi are such that

LVi = ω2
i Vi . (32)
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Figure 3. Plot of the E component of the normalized first, second and third eigenmodes. The film
is in the middle of the cavity xa = π/2. The other parameters are the same as in figure 1.

The boundary value problem (13) is not a standard Sturm–Liouville problem because the
potential depends on the eigenvalue. Therefore one needs to define a particular scalar product
so that the normal modes Vi defined previously are orthogonal. This is crucial if we want to
use these modes as vectors on which we can project the state of the linear system (10) and
therefore obtain a simplified description.

To define this scalar product consider equation (12) with two solutions

E′′
j (x) + ω2

jEj (x) + αω2
jQjδ(x − xa) = 0, (33)

E′′
i (x) + ω2

i Ei(x) + αω2
i Qiδ(x − xa) = 0. (34)

To show orthogonality the equation for Ei is multiplied by Ej and vice versa. Subtracting the
resulting equations one obtains

EiE
′′
j − EjE

′′
i +

(
ω2

j − ω2
i

)
EiEj + αδ(x − xa)

(
Eiω

2
jQj − Ejω

2
i Qi

) = 0. (35)

After integration the resulting equation on the domain [0; l] the first two terms drop out
because of the boundary conditions. Substituting Ei,Ej from (20) in the last term leads to the
following:

(
ω2

j − ω2
i

) [∫ l

0
EiEj dx + ω2

0QiQj

]
= 0. (36)

This shows that for ωi �= ωj the term in the brackets should be zero. The scalar product is
then defined as

〈Vi; Vj 〉 ≡
∫ l

0
EiEj dx + ω2

0QiQj . (37)

Relation (37) establishes a strictly positive linear form, so it is a scalar product.
Equation (36) shows the orthogonality of the eigenvectors Vi for the scalar product defined

by equation (37). Now it is possible to choose Ai such that the vectors are normalized

〈Vi; Vi〉 = 1.

For this we compute 〈Vi; Vi〉, set it equal to 1 and this gives the value of Ai .
The normalized eigenvalues are plotted in figure 3 together with the associated Qi in

figure 4 for a film placed in the center of a cavity of length l = π . Note the clear break in the
derivative at xa . The orthogonality of the modes (Vi , Vj ) comes from the compensation of
the integral of EiEj by the product QiQj .
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Figure 4. Plot of the Qi components of the normalized eigenmodes as a function of ω for
xa = π/2, l = π . The eigenvalues are indicated by the vertical lines.
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Figure 5. Plot of the squares of the Fourier sine coefficients of the E component of the first normal
mode in the log-linear scale. The function 1/n4 is plotted as a continuous line.

These modes are specially adapted to describe the coupled system film/cavity. Many
standard sine Fourier modes are necessary to get a good approximation of the first normal
mode. This is seen in figure 5 which shows the amplitude square of the sine Fourier coefficients
of the first normal mode. Note the typical 1/n4 decay due to the fact that the second derivative
of E is singular at x = xa [32].

When the film is shifted to one side of the cavity, the modes become asymmetric as shown
in figure 6. Again the break in the derivative is clearly apparent. Here standard Fourier modes
only appear for n = 4, 8, . . . . The Qi decay very quickly to 0 as shown in figure 7.

5. Cavity mode transfer using an active film

The normal modes defined in the previous section define a basis to describe the state of the
combined system cavity/film. We now show that it is possible by acting on the film to switch
the cavity from one mode to another neighboring mode. This feature is impossible for a single
linear system. It is possible here because of the combination of the two linear subsystems: the
cavity and the film.

In order to describe analytically this process, we introduce the forcing of the film as
f (q, qt , t) and write the system as

ett − exx = −αδ (x − xa) qtt , (38)

9
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Figure 6. Plot of the E component of the normalized first, second and third eigenmodes. The film
is shifted to the left of the cavity xa = π/4. The other parameters are the same as in figure 1.
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Figure 7. Plot of the Qi components of the normalized eigenmodes as a function of ω for
xa = l/4, l = π . The eigenvalues are indicated by the vertical lines.

qtt + ω2
0q = αe(xa) + f (qt , t). (39)

Using the vector notation V of the previous section, this system can be formally written
as (

∂2
t + L

)
V = F, (40)

where the operator L is given by (31) and the forcing is

F =
(−αδ(x − xa)f

f

)
. (41)

For this linear system, it is natural to expand the state vector V in terms of the (normalized)
normal modes

V =
(

e

q

)
=

∑
i

αi(t)Vi , (42)

where the normal modes Vi verify the relation LVi = ω2
i Vi . Plugging (42) into the

equation (40) and projecting over each normal mode we get

α̈i + αiω
2
i = 〈ViF〉, i = 1, 2, . . . , (43)

10
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where the scalar product

〈ViF〉 =
∫ l

0
Ei(−αf δ(x − xa)) dx + ω2

0Qif = ω2
i Qif. (44)

To be specific, we now assume that f consists in a damping and forcing term

f (t) = −γ (t)qt + I (t). (45)

This is a natural choice for the theory since we are dealing with linear oscillators. Note also
that such a pulse could be easily prepared in an experiment. Recalling the linear combination
(42) qt = ∑

n α̇nQn we get the final expression of the scalar product (44)

〈ViF〉 = −γ (t)ω2
i Qi

∑
n

α̇nQn + ω2
i QiI (t). (46)

To illustrate this, consider just two modes in expansion (42). The system describing the
evolution of the mode amplitudes is then

α̈1 + α1ω
2
1 = −γ (t)ω2

1Q1(α̇1Q1 + α̇2Q2) + ω2
1Q1I (t), (47)

α̈2 + α2ω
2
2 = −γ (t)ω2

2Q2(α̇1Q1 + α̇2Q2) + ω2
2Q2I (t). (48)

Note that only using the normal modes (19) and (20) and the scalar product (37) does one
obtain a consistent modal description of the system. Using for example the standard Sturm–
Liouville modes associated with a linear impurity placed at x = xa leads to an inconsistency.
This important fact is shown in appendix A.

Also remark that for l = π, a = l/2, the normal modes include the even (standard) sine
Fourier modes. These however are decoupled from all the other modes because for them
Qi = 0 so the right-hand side of the amplitude equation (47) is zero.

6. Numerical simulations

To test these ideas, we have undertaken numerical simulations of equations (10) using the
method of lines, where the spatial operator is integrated over reference intervals (finite volume
method). The time evolution is then done using an ordinary differential equation solver. The
algorithm is described in appendix B.

6.1. Linear regime

We introduce a characteristic forcing time function

g(t) = 1

2

[
tanh

(
t − t1

wt

)
− tanh

(
t − t2

wt

)]
, (49)

and assume that the damping and forcing are

γ (t) = g(t)γ0, I (t) = g(t)β sin(ωt + φ), (50)

where γ0, β, ω and φ are parameters. We consider the case of a centered film xa = l/2 = π/2.
For all the runs presented, we chose γ0 = 0.1, β = 0.2, φ = 0 and a time interval of forcing
[t1, t2] = [50, 100] with wt = 1. Unless otherwise specified, the initial state of the system is
the first normal mode.

As a first step, we validate our mode amplitude differential equations (47) by comparing
their solution with the mode amplitudes obtained by projecting the solution of the partial
differential equation (10) onto the normal modes Vi given by (19) and (20). The integrals are
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Figure 8. Time evolution of the absolute difference |αi(t) − α′
i (t)|, i = 1, 2, 3 (from left to right)

between the solution of the amplitude equations (47) and the coefficients obtained by projecting
the solution of the full partial differential equation (10). The system has been forced at frequency
ω = 1.4 ≈ ω2 during the time 50 < t < 100.
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Figure 9. Plot of αi(t) for i = 1 (dashed line, green online) and i = 2 (continuous line) after
having forced the system at frequency ω = 1.4 ≈ ω2. The system is started in the mode 1 only,
α1 = 1.

calculated using the trapeze method using 800 mesh points. Figure 8 shows the absolute error
in log scale as a function of time for the first three modes (except even Fourier modes). The
difference is consistent with the error made in the trapeze integration method O(h2). Note
that for i = 2 the difference increases during the forcing. This is due to the appearance of new
modes as shown below. The agreement is excellent and the error of about 10−5 is essentially
the error in the trapeze method h2 = (π/800)2 ≈ 10−5. If only the first three modes are used
in the amplitude equations, the error is still very small. In many other cases, we compared the
solution of the full problem (10) with that given by the amplitude equations (47) and always
found errors of about 10−5. This shows that these simple amplitude equations are a precise
way to describe the complex system film/cavity.

After this validation, we examine the role of the forcing frequency and show that we
can transfer energy from one cavity mode to another by acting on the film via the forcing
and damping (50). The value of the forcing frequency is essential as shown in the following
figures. First we chose ω = 1.4 ≈ ω2 so that we are forcing the system to resonate in the
second normal mode. The energy transfer is then efficient and after a short time of forcing we
find the system in the normal mode 2 with very little left of the normal mode 1. This is shown
in figure 9 where we plot the initial mode as a dashed line and the newly generated mode as
a continuous line. This notation will be used throughout this section. We now change the
forcing frequency to ω = 1 and retain otherwise the same protocol. In this case we do not
have a resonance of the system and it responds by generating components on the neighboring
normal modes. When forcing the system on the sine Fourier mode ω3 = 2 for which Q3 = 0
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Figure 10. Plot of αi(t) for i = 6 (continuous line) and i = 1 (dashed line) after having forced
the system at frequency ω = 5 ≈ ω6 = 5.06.... The system is started in the mode 1 only, α1 = 1.
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Figure 11. Plot of αi(t) for i = 6 (dashed line) and i = 1, 2 (continuous line) after having forced
the system at frequency ω ≈ ω1 = 0.66. The mode 3 is also present as shown by the short dashed
line (blue line). The system is started in the mode 6 only, α6 = 1.

no energy is fed into this mode as expected from the amplitude equations (47). The system
responds on the first, second and fourth normal modes. We have forced the system at frequency
ω = 5 and obtained conversion from mode 1 to mode 6. This is shown in figure 10. If we
choose ω closer to ω6 the transfer is even better so that the amplitude of the mode 6 is larger.
Note that it is also possible to obtain down conversion of modes. For example starting with
mode 6 and forcing at a frequency ω = 0.66 ≈ ω1 we obtain the mode 1 and a little of mode
2. This is shown in figure 11. The value of Qi determines the efficiency of conversion to or
from the mode i. For example with a cavity of length l = π and a film placed at a = l/2, we
find Q1 = 1.8 and Q6 = −0.15. We can then state that in general, conversion from modes
close to ω0 to normal modes far from ω0 is more efficient than the converse. This is because in
the amplitude equations (47) the damping of αi is proportional to Q2

i while the amplification
term is proportional to Qi . So a mode close to resonance with a large Qi is damped more than
another normal mode with a smaller Qj . This is shown in figures 10 and 11.

Finally let us comment on the influence of the damping, forcing time and frequency on
the mode transfer. The main effect of the damping is to eliminate the original starting mode
whose evolution is given by an exponentially damped oscillation [33]. The forced mode
appears through linear resonance, its amplitude increases linearly during the forcing time and
its final amplitude does not depend strongly on the damping. As an example consider an
increase of the damping from 0.1 to 0.5 for the case shown in figure 10. Then the amplitude of
the first mode is reduced from 0.4 to about 0.02 and the amplitude of the sixth mode remains
practically unchanged at about 0.4. Last, because this is a linear resonance it is important to
be close to the resonant frequency in order to excite the corresponding mode. In practice, the
window of resonance is given by the damping term in (47), δω = γω2

i Q
2
i . For the case of
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figure 10, we get δω = 0.125 for a damping γ0 = 0.5. In fact, taking ω = 4.5 instead of 5
will only yield an amplitude of 0.1 for the amplitude of the sixth mode.

To summarize we have shown that this linear system can convert energy from one normal
mode to another. This was thought impossible for a linear system because of the orthogonality
of the normal modes. Here because we act on the sub-system we are able to do this transfer.
Another important result is the excellent agreement between the solution of the amplitude
equations and the solutions of the initial problem. This simple method could then be used in
practice to solve the singular partial differential equation (10).

6.2. Nonlinear regime

Another way to convert energy from one mode to another is through nonlinearity. A well-
known example is the famous study of Fermi, Pasta and Ulam (see for example the entry in
[34]) showing energy recurrence between Fourier modes in a chain of anharmonic oscillators.
Now we consider the film to follow a law with a cubic nonlinearity and take out the driving
and damping terms.

The film equation now incorporates a cubic nonlinearity so that the composite cavity/film
is described by system (8). The cubic term can be treated as in the previous section and
incorporated into the F term of equation (40). The scalar product is

〈ViF〉 = ω2
i Qiq

3 = ω2
i Qi

(∑
n

αnQn

)3

. (51)

Then the amplitude equations are

α̈1 + α1ω
2
1 = ω2

1Q1

(∑
n

αnQn

)3

, (52)

α̈2 + α2ω
2
2 = ω2

2Q2

(∑
n

αnQn

)3

. (53)

. . .

If there is in addition forcing and damping on the system, one needs to add to the right-hand
side of (52) the terms on the right-hand side of (47).

As the amplitude of the film polarization q increases, one expects that higher and lower
frequency normal modes will be excited. This coupling to the other modes is clear from the
right-hand side of the amplitude equations (52). Of course one should not increase too much
the amplitude of the forcing because then the wavelength of the cavity modes would reduce
and become comparable with the film thickness. Then approximating the film by a Dirac
distribution would not make sense.

We start the system in the first normal mode with zero amplitude and a positive velocity
and let it evolve from 0. This procedure is chosen so as not to create a shock in the system
with the nonlinearity. For small velocities, there is little transfer from the first to the second
and third modes. Again the sine Fourier modes do not play any role because for them Qi = 0.
Increasing the initial velocity increases the transfer of energy to the higher modes. For a
velocity of 0.5, figure 12 shows the evolution of αi, i = 1 − 4 as a function of time for
both the full system (8) and the amplitude equations (52). As expected the nonlinearity
generates higher frequencies. Note the excellent agreement between the solution of the partial
differential equation system and the amplitude equations. This holds even for such large
velocities as 2.
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Figure 12. Plot of αi(t) for i = 1 (continuous line), i = 2 (long dash), i = 3 (short dash) for a
system with cubic nonlinearity. The results from the amplitude equations (52) with eight modes
are also plotted and they superpose exactly. The initial velocity is 0.5. The system is started in the
mode 1 only.
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Figure 13. Short time evolution of αi(t) for i = 1−6 from top left to bottom right. The same time
evolutions for t = ktrec where trec = 290 and k = 1 − 4 are plotted on the same panels showing
recurrence. The initial velocity is 0.5 and the system is started in the mode 1.

We conclude this section with an observation of recurrence similar to what happens for the
Fermi–Pasta–Ulam system. Figure 13 presents a short time evolution of the first six modes for
an initial velocity of 0.5, starting from the first mode. In the plots of figure 13 are superposed
four other time evolutions taken at times t = ktrec where trec = 290 and k is an integer. This
recurrence could indicate that our system is close to being integrable.

7. Conclusion

We considered the interaction between an electromagnetic field in a cavity and a thin polarized
dielectric film. The model is the Maxwell–Lorenz system where the medium is described by
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an oscillator and the coupling to the wave equation is through a Dirac delta function. We
introduced normal modes which are adapted to the system film/cavity. These are well adapted
to describe the time evolution of the system, unlike the standard sine Fourier modes or other
Sturm–Liouville modes. The normal modes composed of the field E and the displacement Q
are orthogonal with respect to a special scalar product which we introduce. The amplitude
equations derived from the normal modes give an excellent description of the dynamics and
could even be used as a numerical tool instead of solving the full partial differential equation
system using the fairly involved finite volume method.

Assuming a linear oscillator for the film, we show conversion from one normal mode to
another by forcing the film at specific frequencies. This is new for linear systems and could
be used for many applications in optics or microwaves.

If the film is described by an anharmonic oscillator, the evolution generates other modes.
Again the amplitude equations provide excellent agreement with the solution of the full
problem. Finally we observed recurrence for certain initial velocities of the film. This
phenomenon is known to exist for systems close to integrability. The fact that we observe it
here may indicate that our system is in some ways close to integrability.
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Appendix A. Inconsistent projection using standard eigenmodes

Using standard Sturm–Liouville eigenmodes and the usual scalar product leads to inconsistent
results. To show this let us assume no forcing for simplicity. We consider the usual eigenmodes
associated with the Sturm–Liouville problem

Exx − α2Eδ(x − xa) = −ω2E. (A.1)

Call these modes En associated with the eigenfrequency ωn.
One then expands the field as

e(x, t) =
∞∑

n=1

αn(t)En(x). (A.2)

Plugging this expansion into the system of equations (10) and projecting onto the En using
the standard scalar product, one gets the evolution of α’s

α̈1 + ω2
1α1 = αω2

0qE1(a), (A.3)

α̈2 + ω2
2α2 = αω2

0qE2(a), (A.4)

q̈ + ω2
0q = α

∑
αiEi(a). (A.5)

Let us examine the jump condition on Ex from the partial differential equation (10). We have

−[Ex]
x+

a

x−
a

= −α
[−ω2

0q + αE(a)
]
. (A.6)
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From expansion (A.2), we obtain

−[Ex]
x+

a

x−
a

= −
∑

n

αn[Enx]
x+

a

x−
a
.

We get the jumps of Enx from the eigenvalue relation

Enxx − α2Enδ(x − xa) = −ω2En,

and obtain that

−
∑

n

αn[Enx]
x+

a

x−
a

= −α2
∑

n

αnEn(a) = −α2E(a),

which is clearly inconsistent with the result obtained from the original system (A.6). Therefore
one needs to use the normal modes associated with the full system and the special scalar product
(37) to get a consistent reduced description of the system.

Appendix B. Numerical method for solving (10)

The evolution equation (10) involves a partial differential equation with a Dirac distribution
coupled to an ordinary differential equation. We solve this coupled system using the method
of lines where the time operator is kept as such and the space operator is discretized, naturally
leading to a system of coupled ordinary differential equations. The spatial operator is a
distribution so the natural way to give it meaning is to integrate it over small reference
intervals (finite volume approximation). The value of the function is assumed to be constant
in each volume. This method of lines allows us to increase the precision of the approximation
in time and space independently.

We transform (10) into a system of first order partial differential equations

et = f, (B.1)

ft = exx − αδ(x − xa)rt , (B.2)

qt = r, (B.3)

rt = −ω2
0q + αe(xa). (B.4)

We then define our volume elements making sure that xa is the center of one element. We
then integrate the operator on each volume [xn −h/2, xn + h/2] where h is the space step. For
xn �= xa , we recover the standard finite difference expression for the Laplacian

exx = en+1 + en+1 − 2en

h2
+ O(h2),

and get the discrete wave equation

ėn = fn, (B.5)

ḟn = en+1 + en+1 − 2en

h2
. (B.6)

For xn = xa , we get

ėn = fn, (B.7)

ḟn = en+1 + en+1 − 2en

h2
− αṙ, (B.8)
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q̇ = r, (B.9)

ṙ = −ω2
0q + αen. (B.10)

The coupled system (B.5) and (B.7) is then integrated using an ordinary differential equation
solver. In practice we use the variable step Runge–Kutta 4–5 Dopri5 developed by Hairer and
Norsett at the University of Geneva [35].
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